
SORTING NUMBERS FOR CYLINDERS AND 
OTHER CLASSIFICATION NUMBERS 

0, ~~troduction. Set partitions (corresponding to equivalence relations) are ir 
the following called sortings. Catalan [3, pp. 22-23] expressed in 1865 Stirling num. 
hers of the second kind and their sums (now also called Bell-Stirling numbers) a! 
numbers (i.e., cardinals of sets) of sortings. The umbra1 generating function 01 
these sums, namely ee"-l, and its coefficients were mentioned in a different contexl 
by Boole [Z, pp. 27, 2451 in 1860. (For further references see [4] and [lo].) 

When of all sortings obtained from each other by a permutation of the sorted sei 
s only one is counted then the sorting numbers become (arithmetical) partition 
numbers. As an intermediate step one can use only those permutations that belone 
to a given subgroup G of the symmetric group on S. We study the two cases where 
Sis a direct product S,S, and G is induced either by the powers of a cyclic permuta- 
tion of one factor S, or by the symmetric group of S,. In the first case it is natura 
to call the structure (S, G) a cylinder. 

Together with sortings we consider similar structures where the sets are replacec 
by lists (indexed sets), and other classifications. These are structures-i.e., sets (01 
lists) of sets (or lists) of sets (or lists) etc. (finitely many times) of elements whicf 
pave a set S, that is, cover and pack S. A structure T covers S if every element of ,! 
occurs at least once in T ;  while if every element of S occurs at most once, and if nc 
element outside S occurs, then T is a packing (the lists are nonrepetitive and tht 
lists and sets are disjoint). 

For numbers of structures so defined we obtain in 554-7 recurrences, generatinf 
functions, values and congruence properties. Many of these results (even f o ~  
ordinary sorting numbers) are new. Some proofs are omitted or condensed. $51-: 
help systematize the notation. 

1. Mappings. Let L, M,  N be finite, possibly empty sets, with cardinal! 
lLI=l, IMI=m, INI=n. Let 

MN be the direct product of M and N,  
LN the set of mappings from N into L (N-lists in L), including as subsets - 

' This work was supported in part by NSF Grant 14026. 
Copynzht 0 1971, American Mathematics1 Sosiot. 

167 



T. S. MOTZKIN 

LN, (in-valence 11 on L) the set of injections (N-ads in L), 
LN, the set of surjections (N-lists on L), 
LN= the set of bijections, 

M! = ME the set of permutations of M. 

In analogy to IMNI =mn, ILNI=In, IM! I =m! we define 

and similarly in the sequel. Since 

I: = 0 for I > n and I: = 0 for n > 1, 

the sums 

2 1: and 2 I: 
I 

are finite; such sums will be abbreviated to 

2: and 13, 

and their largest terms to 

maw: and IYX = I ! .  

Deemphasizing the individuality of N, the sets LN, L:, LN,, LN= can be regarded as 
sets of lists of elements of L (n-lists in L, n-ads in L, etc.) and denoted L", L:, L!., 
LZ. 

2. Symmetric merging and subgroupwise merging. If we merge (identify, collect 
into equivalence classes) those mappings that are obtained from each other by a 
permutation of N we replace, in the above notations, N by !N and n by !n; 
similarly for L. 

The set L:", also denoted (i), is the set of sets of n elements of L (n-sets in L), and 
L1" is the set of n-tuples in L (the sum of the "multiplicities" of the elements is n). 
We have 

and the largest term of I9=2l is I ' F =  (&,). 
If, for merging of mappings, we use a subgroup G of N! we replace, in the 

notations, !N by "N, !n by %. If G is the group N, generated by a cyclic permuta- 
tion of N we write cYN for GN and c% for %. 

If only those mappings are admitted that are invariant under (every member of) 
G we write CN and %I. 
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3. ClassiEcations. Deemphasizing the individuality of L, the set LN, becomes 
IN,, the set of listedsortings of Ninto I nonempty disjoint classes. While its members 
are I-ads of sets, those of ! IN, are I-sets of sets, namely sortings of N. We have 

!I: is the Stirling number of second kind for n and I. 
The members of !l:N and ILN are respectively sets of cardinals and lists of car- 

dinals, namelypartitions of n and listedpartitions (compositions) of n into I nonzero 
terms, and correspond to the isomorphism classes of sortings and listed sortings.' 
For results on the "cyclic" compositions or partitions O7I:N and related concepts 
see [9]. 

Summing over A =  0, . . . , I we have 3 

For A >  n the terms are 0; the sums become, for I> n, independent of I and will be 
denoted by 

respectively the partition number and the sorting number (Bell-Stirling number) 
of n. Their largest terms are 

!ma:" and !maxT. 

The set IN,+ of I-ads of nonempty disjoint ads exhausting Nand the set !IN,+ of 
I-sets of such ads cannot be obtained from LN by subset formation and merging.; 
If we admit empty ads we omit the > sign; again we have 

and denote ! P+, 1 2  n, and its largest term by 

!"+ = ! y,+ and !max:+. I 

From I:+ =I:"n! follows for n t 1 

If every class of a sorting of N is divided into subclasses, we have an example oi 
a 3-level classification of N (levels 0, 1, 2, 3 are the elements, subclasses, classes and , 
the union or set of the classes). The members of zN,+, ZN,, !N+, !N are various kinds) 
of 2-level classifications of N, Nitself and its permutations are 1-level classifications 
A classification is setwise if it is obtained only by set formation, e.g., a sorting. 

A classif~cation of N is proper if a class with only one subclass can only have one 4 
I 
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subsubclass, and if, for n >  I, not every I-level class has only one element. The 
number of proper setwise classifications of N is finite and will be denoted by h,. 

4. Sortings of a product. Among numbers connected with mappings from a 
product M N  we mention 

For lr mn they are independent of I and can be denoted by 

Ilmn lCYm.n !!m.n, l%m.n. . ,  . ,  

Some of these latter combinatorial functions arise in the study of the number of 
identities in semigroups. 

For nz= l the numbers in (1) become !In. For m=2 still M !  = M,,, and 

For nzr 3, each class in a member of !I!M.N is easily seen to he either MN,, N l c  N, 
or (p}N2, p E M, N,c N, and in the latter case the N ,  are the same for all p EM. 
Thus the number of sortiugs does not depend on m, and 

By summation over I we obtain 

For prime m, each class in a member of ! PM.N is easily seen to be either 

or a member of 

MNa, N2 c N, 

and in the latter case its cyclic transforms pave MN2. 

5. Recurrences. From the comhinatorial definitions one obtains easily 
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where 1 is the vicarious exponentiation recipient; e.g., (1 + 1 +2 !I+ !2. 

(Compare also b,= ( 1  + bl)", n r 2, for the Bernoulli numbers.) 
From the recurrence 

and the same expansion for !"+ we deduce 

6. Generating functions. The umbra1 (exponential) generating functions 

(2') w=znI ,zn/n!=ez/( l -z) ,  / z l < I ,  (I-z)w1=(2-z)w, 

(3') w = z~; zn/n! = 1/(2-e3, lzl < log2, w' = 2w2-W, 

(4') w = 2 !nzn/n! = e@-l , lzl < cu, w' = ezw, w"w = w'(w'+w), 

(5') w = 2 !%"/n! = e2'ez-1), (zl < cu, w' = 2ezw, w"w = wr(w'+w), 

= 2 !=~.rn~n/~! = e e s - i + ~ ~ ~ * - ~ ) i ~  9 IzI < a, 
(Q w1 = w(ez+epz), ( ~ ~ z + ~ w ~ w -  wnwy = (p- l)p-l(w"w-wr2-w'w)w2p-2, 

wmwa = ~ w " w ' w + c ~ +  I ) W " W ~ - ~ W ' ~ - ( ~ +  I ) w ' ~ w - ~ w ' w ~ ,  

(7') 
w = 2 h,zn/n!, z = 2w-1-em-I, lzl < log4-1, 

(zC3)w' = 2w'wf I, 

(8') w = ~ ! " + z n / n ! = e Z K 1 - " ,  l z l < I ,  ( I - ~ ) ~ w ' = w ,  

are obtained from the corresponding recurrences, via the first-order differential 
equations with initial value w(0) = 1. 

Formula (6') defines w for every complex p. In particular, 

= e e E - i + ~  = (ee'-I)' = z!'+lzn/n! fo rp  = 0, 

w+ee"-' f o r p + - m a n d R e z r 0 .  

The coefficients of w are polynomials in p (see 57) and are, for n > 0, smaller than 
!=P when p is composite. I 
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It can be shown that if an umbra1 series w generates the numbers of classifications 
of a certain level, then those of the next higher level are generated by em-l if the 
new classifications consist of sets of old ones, and by 1/(2-w) if they consist of 
lists (ads). 

7. Values. The relative size of numbers of lists or sets is apparent from the 
following table where packing is, but covering is not assumed. 

elements n 0 1 2 3 4 5  or further values or rcferonces see 

:I from(2)) 1 2 5 16 65 326 1111 
lists { 1 1 2 6 24 120 o, pp. 272-2731: [Ill 

1 2 4 8 16 32 see below 
1 1 2 3 6 10 see below 

For level 2: numbers of lists (or sets) of lists (or sets or numbers) we reassume covering, and 
obtain by inspection (i.e., without machines) and use of recurrences 

Forfunhervaluelor 
n 0 1 2 3 4  5 6 7 8 9 nfercnccs s- 

n+-2"-'n! 1 1 4 24 192 1920 23040 322560 5160960 92897280 
Of F a x  = 1 1 2 12 12 720 7200 100800 l41i200 24501600 

lists 
(rtnn-%&! 

sets of 
!z:+=!*+ 1 1 3 13 73 501 4051 37633 394353 4596553 [Ill 

(from (8)) 
!max:+ 1 1 2 6 36 240 1800 15120 141120 1693440 

lists of 2% (from (3)) 1 1 3 13 75 541 4683 47293 595835 7088261 [Il l  
sets {ma: 1 1 2 6 36 240 1800 16800 191520 2328480 

sets of 
!p,= !" 1 1 2 5 15 52 203 877 4140 21147 **; [Ill 

!max: 1 1 1 3 7 25 90 350 1701 7770 ***; [I, p. 8351 

'*-2*-' I I 2 4 8 16 32 64 128 256 [I,pp. 24-44]; 
lists of 

numbers 
I111 

( )  I 1 1 2 3 6 10 20 35 70 KPP. 828-8301; 
111, I 2 6 201 

!p= !I" 1 1 2 3 5 7 11 15 22 30 [l,pp.8368391; 
sets of 

numbers 
[Ill 

!max$ 1 1 1  1 2 2 3 4 5 6 * 

*continued 9 11 15 18 23 30 37 47 58 71 90. 
'* The values of !" for n c 51 are given in [S]. I have the values for n S 200, 

obtained (with help from D. Cantor and A. Fraenkel), in 16 sec., by the IBM 
360191 at the UCLA Computing Facility. We give here 4 values to 8 figures: 

By [S], !" is asymptotic to 

exp (((log v)=-log v+ I)v-)log log v-I) = vneY-"-'/=n 

1 
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where v log v=n. A better approximation seems to be 

given in [8] without error term or indication of the way in which it might be 
superior to other asymptotic expressions. Setting !"=p,,(l- AJn) we find 

***By 171, p. 413 last line (at whose end an exponent 112 should be appended) 
and p. 412, line 17 (both only with hints to proofs), !ma% is asymptotic to 

exp (((10gv)"-log v+ 1)v-+log v-  1 -+log2?r) = ~ ~ - l ~ ~ e " - " - ~ / ~ &  

Similarly we obtain these numbers of certain sets of subsets of direct products: , 

For prime p, !Fp " is a polynomial in p of degree n- 1 (for n >O). The sequence of : 
these polynomials starts 1 

Finally, for classiiications of unbounded level we find 

Far fvrthcr values or 
referenen set 

h, 1 1 1 4 26 236 2752 39208 [I11 I 

8. Congruence properties. While the h e a r  recurrence (4) for !" is not of 
bounded degree, !" mod a prime p fulfills the linear recurrence 
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of degree p and with constant coefficients [6]. A combinatorial proof of (9) is the, 
by far simplest, case t=  1 of the proof of (10). 

From (9) follows, first letting n=O, then using (4) for n=p-1, 

The recurrence (9) holds also for a" if an=a+ 1. In the field GF(p'), the charac- 
teristic polynomial g(x)=xP-x-I has p roots ak=ap+k, no proper subset of 
which has its sum in the prime field GF@), over which g(x) is therefore irre- 
ducible. The a; are the p fundamental solutions of (9); the linear combination that 
represents !" can be shown to be 

Since aE3=ak+j we have aK'= 1 where 

It is unknown where !"mod p can have a smaller period. The prime decompositions 
of the first values of p' are, according to J. L. Selfridge, 

For !" mod pt, t 2 1, we prove the linear recurrence 

of degree pt with constant coefficients; s,(x) denotes the sorting polynomial 
2 !(A- k):xK. Indeed consider the set N+Pt, ]PI =p  (+ means disjoint union) and 
a cyclic permutation s of P" acting indirectly on an arbitrary sorting u of N+Pt. 
The list 

u, UT, . . ., u7nt-l 

has no repe:itions unless uB=u where 4=rp'-l. If uB=u then, for each element TI 
of Pt, either 
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belong to the same class in u (case I) or they belong t o p  different classes (case 11); . 
the latter contain no element of N nor any case I-element. Fmally it is easily seen 
that the number of sortmgs of N+Pt  for wh~ch exactly j of the p-sets (1 1) belong to 
case I (j=O, . . .,pt-l) is 

For j # , O  we have (P'; ') = .*-I 0, hence ~ ~ t - 1 -  ,(p) in (10) can then be replaced by 
its constant coefficient 1. For j= ,O,  # ,.O we have I?;')=,*-aO, but 

For p 2 this can be written 

p + p a  = (1 + p+ 1)'. 
uB 

where OO=l; thus s,*-l_,@) in (10) can be replaced by 1 +OU-= 2. There follows 
' 

in particular 

i 

A more detailed analysis shows that for every t 2 1 and prime p > 2 we 

(12) !n+nr = (1 + !n+lyf-l. 
.t 

Setting n = 0  we obtain 

!ut = pt-=+1.  

DL 

The characteristic polynomial of the recurrence (10) is 

For p # 2 we can replace it by 

For t=2, p = 2  the characteristic polynomial is x4-2-2x- 3. 
A similar (and simpler) proof than that of (10) shows that 

For p >  2 the corresponding polynomial is xD-x-2=, 2g(x/2), and p' is again a 
' 

period. 
; 
1 

1 



It follows from the fact that the highest and lowest coefficients of the recurrence 
(10) are #,O that !"is periodic, without preperiod, forpt and hence for every modu- 
lus m, and that the period is 5 mu, where p is the largest prime power dividing m. 
The periodicity, with possible preperiods, follows also from (4') and Fujiwara's 
theorem [5] on the umbra1 coefficients (if integer) of solutions w = z  a,zn/n! of 
algebraic differential equations . 

F(z, w, w', . . ., w'"') = 0 

with integer coefficients for which 

aF - (0, a,,, alp. . ., ad) = I .  awed' 

By the same theorem, modular periodicity holds also for the coefficients 
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PATHOLOGICAL LATIN SQUARES 

E. T. PARKER 

1. The central open question in finite projective planes is whether one exists c 
order not a prime-power. They have been known to exist for every prime-powe 
order since about the turn of the century. Only one theorem, due to Bmck an 
Ryser [I], shows nonexistence of finite projective planes of infinitely many order'. 
not prime-powers, of course. Considerable pamally expository hterature is availablt 
such as PI, PI, t41, 151. 

A latin square of order n is an n by n array of n symbols each present (only onw 
in each row and each column. A set of latin squares of like order is called orthogonj 
if each pair of distinct members of the set includes all ordered pairs of symbols (on1 
once) among the na positions. A folk theorem of the 1930 decade asserts thr 
existence of a projective plane of order n (n an integer exceeding 1) implies existend 
of a complete set (for no larger set can exist) of n- 1 orthogonal latin squares c 
order n, and conversely. 

The lowest order for which existence of a projective plane (and equivalently 4 

complete set of orthogonal latin squares) is undecided is ten. The author [6] an; 
quite recently John W. Brown have found by using dlgltal computers that few (ani 
quite possibly none) of the numerous distinct latin squares of order ten are e,! 
tendible to complete sets. Unfortunately for order ten, to say nothing of large; 
orders, the number of nonisomorphic latin squares (after identifying equivalenct I 
by permuting rows, columns, and symbols independently) is astrononucal. Whc I 

seems needed is theorems rejecting wide classes of latin squares as possibihtics fc 
inclusion in complete sets. The author knows of only two previously know' 
theorems of this nature: Euler [7] proved this and more for cyclic latin squares c: 
even orders (except for the rather degenerate order two); Mann [S] proved tw 
further theorems, in spint almost a generalization of Euler's. The author in tht 
paper generalizes the fundamental theorem of EuIer In another direction. 

A latm square not extendible to a complete set will be called pathological; t h ~  
Euler, Mann, and the author have given sufficient conditions for a latin square t 
be pathological. While the author is designatmg these latin squares as pathologica" 
experiments indicate that these constitute the majority for any consequentl: 1 
order. Metaphorically, many more people are 111 than sound, and the task is t 

I 
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