SORTING NUMBERS FOR CYLINDERS AND
OTHER CLASSIFICATION NUMBERS

THEODORE S. MOTZKIN®

0. Introduction. Set partitions (corresponding to equivalence relations) are in
the following called sortings. Catalan [3, pp. 22-23] expressed in 1865 Stirling num-
bers of the second kind and their sums (now also called Bell-Stirling numbers) as
numbers (i.e., cardinals of sets) of sortings. The umbral generating function of
these sums, namely e®°~%, and its coefficients were mentioned in a different context
by Boole [2, pp. 27, 245] in 1860. (For further references see [4] and [10].)

When of all sortings obtained from each other by a permutation of the sorted set
S only one is counted then the sorting numbers become (arithmetical) partition
numbers. As an intermediate step one can use only those permutations that belong
to a given subgroup G of the symmetric group on S. We study the two cases where
S'is a direct product S,S; and G is induced either by the powers of a cyclic permuta-
tion of one factor S; or by the symmetric group of S;. In the first case it is natural
to call the structure (S, G) a cylinder.

Together with sortings we consider similar structures where the sets are replaced
by lists (indexed sets), and other classifications. These are structures—i.e., sets (or
lists) of sets (or lists) of sets (or lists) etc. (finitely many times) of elements which
pave a set S, that is, cover and pack S. A structure T covers S il every element of S
occurs at least once in T'; while if every element of .S occurs at most once, and if no
element outside S occurs, then T is a packing (the lists are nonrepetitive and the
lists and sets are disjoint).

For numbers of structures so defined we obtain in §§4-7 recurrences, generating
functions, values and congruence properties. Many of these results (even for
ordinary sorting numbers) are new. Some proofs are omitted or condensed. §81-3
help systematize the notation.

I. Mappings. Let L, M, N be finite, possibly empty sets, with cardinals
ILl=1, |M|=m, |N|=n. Let

MN be the direct product of M and N,
LY the set of mappings from N into L (N-lists in L), including as subsets
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LY (in-valence <1 on L) the set of injections (N-ads in L),
LY the set of surjections (N-lists on L),
LY the set of bijections,

M! = MM the set of permutations of M.

In analogy to |MN|=mn, |L¥|=I", |M!|=m! we define
-y, o=y = (L)n!,

and similarly in the sequel. Since
=0 forl>n and In =0 forn>I,

the sums

> oand D

1 n
are finite; such sums will be abbreviated to

> and 12,
and their largest terms to
max? and BE==T1,

Deemphasizing the individuality of N, the sets LY, LY, L¥, LY can be regarded as
sets of lists of elements of L (n-lists in L, n-ads in L, etc.) and denoted L*, L, L%,
L.

2. Symmetric merging and subgroupwise merging. If we merge (identify, collect
into equivalence classes) those mappings that are obtained from each other by a
permutation of N we replace, in the above notations, N by !N and n by !n;
similarly for L.

The set L'?, also denoted (%), is the set of sets of n elements of L (n-sets in L), and
L'™ is the set of n-tuples in L (the sum of the “multiplicities” of the elements is 7).

We have
I — (’*"‘1), I = Injnl = (’)
n n,

I = (;’:11), In = 5,

and the largest term of /'2=2"is I'2**=(y}y)).

If, for merging of mappings, we use a subgroup G of N! we replace, in the
notations, ! N by N, !n by %n. If G is the group N,y generated by a cyclic permuta-
tion of N we write YN for N and *n for °n.

If only those mappings are admitted that are invariant under (every member of)
G we write ¢N and %
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3. Classifications. Deemphasizing the individuality of L, the set LY becomes:

1%, the set of listed sortings of N into  nonempty disjoint classes. While its members
are l-ads of sets, those of /% are I-sets of sets, namely sortings of N. We have

1r =1z

112 is the Stirling number of second kind for » and 1.

The members of !/ and /¥ are respectively sets of cardinals and lists of car-
dinals, namely partitions of n and listed partitions (compositions) of n into I nonzero:
terms, and correspond to the isomorphism classes of sortings and listed sortings.’
For results on the “cyclic” compositions or partitions /' and related concepts
see [9]. |

Summing over A=0, ..., [ we have

n= > 1Az, =N

Asl Asl

For A>n the terms are 0; the sums become, for />n, independent of / and will be
denoted by

I = |5 and 1= 15,
respectively the partition number and the sorting number (Bell-Stirling number)
of n. Their largest terms are 1

!max'? and !max?.
The set ¥+ of l-ads of nonempty disjoint ads exhausting N and the set 1/%+* of:

I-sets of such ads cannot be obtained from L¥ by subset formation and mergmg
If we admit empty ads we omit the > sign; again we have

R = R, = > ‘
A=<l A<l o

and denote !/**, [>n, and its largest term by

ik = | 0¥ and Imax%*.
From I%* =1'"n! follows for n>1

Sit = 3ial = 22l

max%t = max??n

= ([(nn:li/z])""

If every class of a sorting of N is divided into subclasses, we have an example of
a 3-level classification of N (levels 0, 1, 2, 3 are the elements, subclasses, classes andi‘
the union or set of the classes). The members of ¥+, SX_ IN+ ¥ are various kinds'
of 2-level classifications of N, N itself and its permutations are 1 level clasmﬁcatlons
A classification is setwise if it is obtained only by set formation, e.g., a sorting.

A classification of N is proper if a class with only one subclass can only have one|
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subsubclass, and if, for n> 1, not every 1-level class has only one element. The
number of proper setwise classifications of N is finite and will be denoted by #,.

4. Sortings of a product. Among numbers connected with mappings from a
product MN we mention

(1) !Ilm-n, !lc’m%’ . !l_lm-n.’ | jemen,
For I>mn they are independent of / and can be denoted by

imen jevym-n 1im-n 1¥mn
P | S lag 3 f

Some of these latter combinatorial functions arise in the study of the number of
identities in semigroups.
For m=1 the numbers in (1) become !I™. For m=2 still M | = M, and

1i2n — %([ 2r g !l_!2~n)'

For m> 3, each class in a member of ! X% s easily seen to be either MN;, N1 <N,
or {p}Ng, p € M, Ny N, and in the latter case the N, are the same for all pe M.
Thus the number of sortings does not depend on m, and

Upn o=t = S (") AL L= M.
Astvsa \V

By summation over / we obtain

Hon g= W= (”) ey,
vsn &

For prime m, each class in a member of !/**¥¥ is easily seen to be either
MN,, N, =N,
or a member of
M¥z, N, =N,
and in the latter case its cyclic transforms pave MN,.

5. Recurrences. From the combinatorial definitions one obtains easily

®) n = n(n—1)Z+1, n>1,
3) 257 = (1+34)n nxl,
@ M= (1 + 1), nz0,
©) D — (] 4 1HTy, n>0,
(6) 1t D = (14 1Py (p 1Py 5 >0, p prime,

n—1
) Bpgr =2, (’z)hn_yhm—nhlhn, nzl,
0
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where ! is the vicarious exponentiation recipient; e.g., (1+!)2=1+2 11412,

(Compare also b,=(1+5))", n>2, for the Bernoulli numbers.)
From the recurrence

Z (n
(a+D+ | [(a=-m+
! > (V)(v+ DIt
0
and the same expansion for !** we deduce

[+ D+ gyt = i ne e (n—y 1) 1m0
¢
and then similarly
€ ((.(n+1)+ —(n+1) !n+)~n(!n+ —n !(n—1)+) = p =D,
hence the simpler recurrence
®) {e+DY = Qn+1) M —(n2—p) 12D, n> 1.
6. Generating functions. The umbral (exponential) generating functions
@) w=2nrnl=efl-2), | <1l (-2 =Q2-2w,

(@) w=3rznl=1/Q—e), |z <log2, W =2wi—w,

@4) w= Z Inztnl = e**~1, |z] < oo, w' = ew, w'w = w'(w +w),

(5) w = Z Wngnjp) = g2e*-1), |z| < oo, w o= 2e*w, w'w = w'(W +w),
w= z !gzp-nzn/n! = g1+ -Dip, |z| < o0,

©) w o= w(e*+e™®), (W2+pww—ww) = (p— 17" (Ww—w?2—www? -2

w'w? = 3w'ww+(p+ Dw'w?—2w'2— (p+ Dw'2w—pw'w?,

) w = Zh,,z"/n!, z=2w—1—e*"1 |z] < log4—1,
(43w = 2w'w+1,

@®) i = Z 14 gip) = g#l=2), lz] < 1, (1—2)%w = w,

are obtained from the corresponding recurrences, via the first-order differential
equations with initial value w(0) = 1.
Formula (6”) defines w for every complex p. In particular,

w= e 1tz = (e°-1) = z I"+izvpl forp =0,
w—>e®"! forp—> —ocoand Rez > 0.

The coefficients of w are polynomials in p (sec §7) and are, for n>0, smaller than
127" when p is composite.
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It can be shown that if an umbral series w generates the numbers of classifications
of a certain level, then those of the next higher level are generated by e”~* if the
new classifications consist of sets of old ones, and by 1/(2—w) if they consist of
lists (ads).

7. Values. The relative size of numbers of lists or sets is apparent from the
following table where packing is, but covering is not assumed.

elements n 0 1 2 3 4 5 For further values or references see
lists {n g“gfrorx'l @) 1 2 5 16 65 326 [i1] X

n'mex=pl 1 1 2 6 24 120 [1,pp.272-273]; [11]
sets {n Zoon 1 2 4 8 16 32 seebelow

nimex=(,") 1 1 2 3 6 10 seebelow

For level 2: numbers of lists (or sets) of lists (or sets or numbers) we reassume covering, and
obtain by inspection (i.e., without machines) and use of recurrences

For further values or

n 0123 4 5 6 7 8 9 references see

sop [ETT=2Tinl 11424 192 1920 23040 322560 5160960 92897280
"ﬁf; maxi* = 11212 72 720 7200 100800 1411200 24501600
s (e 132)n!
, [[Z3t=Pt 11313 73 501 4051 37633 394353 4596553 [11]
Se‘ls. o (from (8))
ists I maxzt 112 6 36 240 1800 15120 141120 1693440
lists of [3% (from (3)) 1 1 3 13 75 541 4683 47293 595835 7088261 [11]
sets  maxt 112 6 36 240 1800 16800 191520 2328480
wor [SE=r 112 5 15 52 203 877 4140 21147 **;[11]
sets :’ (from (4))
sels tmaxz 113 7 25 9 35 1701 7770 *#*; [1, p. 835]
ln_9on-1 .
lists of [29=2 112 4 8 16 32 64 128 256 [1, pp. 24-44];
b maxit= [11]
numbers (@) 111 2 3 6 10 20 35 70 [1,pp. 828-830];
[11, 126 20]
ISIm= i .
et of [1Zm=1 1123 5 7 1 15 22 30 [[11,1;]ap.836-839],
oumbess | ool 1111 2 2 3 4 5 6*

* continued 9 11 15 18 23 30 37 47 58 71 90.

** The values of !" for n<51 are given in [8]. I have the values for n<200,
obtained (with help from D. Cantor and A. Fraenkel), in 16 sec., by the IBM
360/91 at the UCLA Computing Facility. We give here 4 values to 8 figures:

150 = |18572426. .. -10%8,

1100 = 47585391 ... -10%,

1150 = 68206412 ... -102%3,

1200 — 62474847 ... -1027°,
By [8], I is asymptotic to

exp (((log v)?—log v+ 1)»—3loglog v—1) = v"e* "~ 1/v/log n
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where v log v=n. A better approximation seems to be

e[ -1/2( _ n(2n®+ T+ 10+
Ha e (v+1) | O o SR Sl pYH ),

given in [8] without error term or indication of the way in which it might be
superior to other asymptotic expressions. Setting !"=pu,(1—A,/n) we find

Aso = .0015...,

Moo = 0008 ...,
Aiso = .0006. . .,
Az00 = 0004 . . ..

**%* By [7], p. 413 last line (at whose end an exponent 1/2 should be appended)
and p. 412, line 17 (both only with hints to proofs), !max? is asymptotic to

exp ((log v)>—log v+ 1)v—4log v— 1 —4log 2m) = v*~V2e"~1~1/4/ 2.

Similarly we obtain these numbers of certain sets of subsets of direct products:

n 0 1 2 3 4 5 6 7 8 9
{!—"" 1 2 6 22 94 454 2430 14214 89918

Ilmaxi 1 2 4 12 48 200 1040 5600 33600

{!m 1 2 7 31 164 999 6841 51790 428131 3929021
Imax?* 1 1 3 10 53 265 1700

{!ﬂ@-n 1 2 8 42 268 1994 16852

ImaxZ3* 1 2 4 24 128 880 7440

For prime p, 137" is a polynomial in p of degree n—1 (for n>0). The sequence of

these polynomials starts

1
2
5+p
154+6p+p?
52+30p+11p%+4p°®
203+ 150p + 80p+20p° + p*
8774780p + 525p%+190p® 4 37p* + p®

Finally, for classifications of unbounded level we find

For further values or
references see

hy, 1 1 1 4 26 236 2752 39208 [11]

8. Congruence properties. While the linear recurrence (4) for !" is not of

bounded degree, !" mod a prime p fulfills the linear recurrence

(9) !n+v s !ﬂ+!n+1

b4

8
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of degree p and with constant coefficients [6]. A combinatorial proof of (9) is the,
by far simplest, case =1 of the proof of (10).
From (9) follows, first letting n=0, then using (4) for n=p—1,

-1
P =2, —1y P =2,
P zz: ( ) P

The recurrence (9) holds also for o if o?=a+ 1. In the field GF(p?), the charac-
teristic polynomial g(x)=x”—x—1 has p roots e,=a,+k, no proper subset of
which has its sum in the prime field GF(p), over which g(x) is therefore irre-
ducible. The of are the p fundamental solutions of (9); the linear combination that
represents !* can be shown to be

»
=D S, ) = xP= V.
P 0
Since af’ = o, +j we have of =1 where

Pr=14p+ - 4p77t = ("= D/(p=1);
hence
s — I,
P
It is unknown where !" mod p can have a smaller period. The prime decompositions
of the first values of p’ are, according to J. L. Selfridge,

2 3

3 13

5 11-71
7 29-4733

11 15797-1806113
13 53-264031-1803647
17 10949-1749233-2699538733

For !" mod pf, t>1, we prove the linear recurrence
pt-1 t—1
10 et = S spemi_ (p ; ) el
(10) =2, s

of degree p* with constant coefficients; s,(x) denotes the sorting polynomial
S I(A—k)L x*. Indeed consider the set N+ P, |P]|=p (+ means disjoint union) and
a cyclic permutation = of P, acting indirectly on an arbitrary sorting o of N+ P".
The list

0, 0T, ..., orP'-1
has no repetitions unless o7 =0 where #2=7P"~1_If o#=¢ then, for each element =
of P, either

(11) ..., P
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belong to the same class in o (case I) or they belong to p different classes (case II);
the latter contain no element of N nor any case I-element. Finally it is easily seen
that the number of sortings of N+ P! for which exactly j of the p-sets (11) belong to
case I (j=0,...,p'" %) is

s (7)) P
J

For j#,0 we have (*';")=,t-10, hence s,¢-1_,(p) in (10) can then be replaced by
its constant coefficient 1. For j=,0, #,20 we have (*']*)=¢-20, but

t—1_ &

s=2-A2) = (p 5 ])p+1 5 1407722 (unless p=1=j=2),

where 0°=1; thus s,¢-1_,(p) in (10) can be replaced by 1+07~2.2. There follows
in particular

In+p2

2

oNe

(”.) 4 0P=2.2 17,
J

For p>2 this can be written

In+p? _ I+l
In+p = [(ERiad)
A more detailed analysis shows that for every #>1 and prime p>2 we have
jntpt = [n+lypt=1
(12) tete - (14 I+,

Setting n=0 we obtain

Pt — !p¢—1+1'
pt

The characteristic polynomial of the recurrence (10) is

-1
x'— Z sf’"‘—j(P)(pj )x’.
For p##2 we can replace it by
*'— (4 1PN

For t=2, p=2 the characteristic polynomial is x*—x?—2x—3.
A similar (and simpler) proof than that of (10) shows that

1E2:(n+p) — (2_01:—2) !Szz-n+ 1922-(n+ 1)
?

For p>2 the corresponding polynomial is x*?—x—2=,2g(x/2), and p’ is again a
period.
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Tt follows from the fact that the highest and lowest coefficients of the recurrence
(10) are #,0 that I is periodic, without preperiod, for p* and hence for every modu-
lus m, and that the period is <m*, where y is the largest prime power dividing m.
The periodicity, with possible preperiods, follows also from (4') and Fujiwara’s
theorem [5] on the umbral coefficients (if integer) of solutions w=73 a,z"/n! of
algebraic differential equations

F(z,w,w,...,w¥) =0
with integer coefficients for which

oF
7@ (O 2o, a,...,a5) =1

By the same theorem, modular periodicity holds also for the coefficients
n%, 3%, B, 1 g,
in (27, (3), (57, (67, (79, (8).
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PATHOLOGICAL LATIN SQUARES

E. T. PARKER

1. The central open question in finite projective planes is whether one exists ¢
order not a prime-power. They have been known to exist for every prime-powe
order since about the turn of the century. Only one theorem, due to Bruck an
Ryser [1], shows nonexistence of finite projective planes of infinitely many order.«‘
not prime-powers, of course. Considerable partially expository literature is avallablt
such as [2], [3], [4], [5]-

A latin square of order n is an n by n array of n symbols each present (only oncel
in each row and each column. A set of latin squares of like order is called orthogonc,
if each pair of distinct members of the set includes all ordered pairs of symbols (onl |
once) among the n? positions. A folk theorem of the 1930 decade asserts the
existence of a projective plane of order  (n an integer exceeding 1) implies existenc
of a complete set (for no larger set can exist) of n—1 orthogonal latin squares c
order n, and conversely.

The lowest order for which existence of a projective plane (and equivalently
complete set of orthogonal latin squares) is undecided is ten. The author [6] an
quite recently John W. Brown have found by using digital computers that few (an
quite possibly none) of the numerous distinct latin squares of order ten are e
tendible to complete sets. Unfortunately for order ten, to say nothing of largcf;
orders, the number of nonisomorphic latin squares (after identifying equivalenct|
by permuting rows, columns, and symbols independently) is astronomical. Wh !
seems needed is theorems rejecting wide classes of latin squares as possibilities fc.
inclusion in complete sets. The author knows of only two previously know,
theorems of this nature: Euler [7] proved this and more for cyclic latin squares ¢/
even orders’ (except for the rather degenerate order two); Mann [8] proved tw
further theorems, in spirit almost a generalization of Euler’s. The author in the
paper generalizes the fundamental theorem of Euler in another direction.

A latin square not extendible to a complete set will be called pathological; thu!
Euler, Mann, and the author have given sufficient conditions for a latin square t ,
be pathological. While the author is designating these latin squares as pathologica
experiments indicate that these constitute the majority for any consequentif‘
order Metaphorically, many more people are ill than sound, and the task is t|
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